

Sample Test Paper IN: Instrumentation Engineering

Duration: 20 Min. Maximum Marks: 16

Q.1-4 carry one mark each

1. Dead zone in a certain thermocouple is 0.25% of span. The calibration is 100°C to 500°C. What temperature change might occur before it is detected

(A) 0.25° C

(B) 0.5° C

(C) 0.125°C

(D) 0.625°C

2. A low pass filter has an input S/N of 20. The input voltage is 3mV. Calculate the noise voltage.

(A) 0.387mV

(B) 0.15mV

(C) 0.086mV

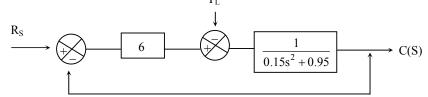
(D) 0.67 mV

A thermometer is calibrated 150°c to 200°c, the accuracy is simplified within ± 0.25 %. Determine maximum static error.

(A) $\pm 0.01^{\circ}$ c

(B) $\pm 0.75^{\circ}$ c

(C) ± 0.3 °c


(D) ± 0.125 °c

4. Which of the following displacement transducer covering large displacement range

- (A) LVDT
- (B) Potentiometer
- (C) Variable capacitance transducers
- (D) RVDT

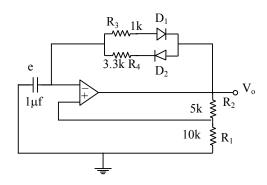
Q.5-10 carry two marks each

5. For the control slm shown in fig.

Calculate the steady state value of the output when the input shaft is held fixed & a sudden forque $T_L = 1$ Nm is applied.

(A) -0.133

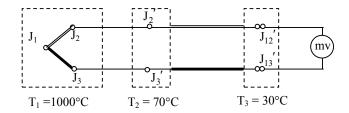
(B) -1

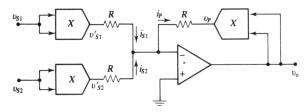

(C) -0.166

(D) -∞

6. Calculate output frequency

(A) $358.16H_Z$


- (B) $217.39H_Z$
- (C) 716.33 H_z
- (D) $334.4H_z$


Getting into the I.I.T.s is your aim, taking you there is ours.

7. Determine ΔT

- (A) 970°C
- (B) 40°C
- (C) 900°C
- (D) 80°C

8 Determine V_o

(A) $-(VS_1^2 + VS_2^2)$

(B) $-(VS_1 + VS_2)$

(C) $\sqrt{-(VS_1^2 + VS_2^2)}$

- (D) none of the above
- **9.** The first four instructions of a subroutine are.

PUSH B

PUSH D

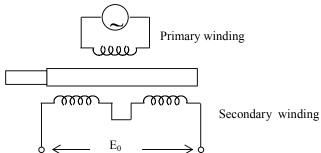
PUSH H

PUSH PSW

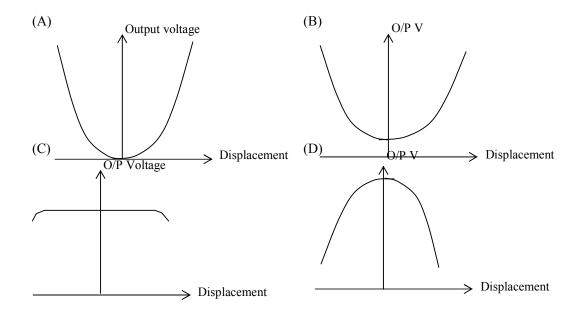
What will be the last six instructions of the sub routine?

(A) POP PSW POP H POP D POP B EI

ΕI


RET

(B) POP PSW POP H POP D


В

- P D POP POP END
- RET (C) POP B (D) POP POP POP POP POP POP POP
 - (D) POP B
 POP D
 POP H
 POP PSW
 END
 RET

10. Fig shows LVDT with primary and secondary windings are connected as shown in fig. Give output waveform

Getting into the I.I.T.s is your aim, taking you there is ours.

